BIOMATERIALS IN CONTACT LENSES

2061414_Eldho Subash
4 min readJul 14, 2021

INTRODUCTION TO BIOMATERIALS

Biomaterial is defined as “a material intended to interface with biological systems to evaluate, treat, augment or replace any tissue, organ or function of the body” and biocompatibility has been defined as “the study and knowledge of the interactions between living and nonliving materials”. The study of biomaterials is called biomaterials science or biomaterials engineering. It has experienced steady and strong growth over its history, with many companies investing large amounts of money into the development of new products.

TECHNOLOGY USED IN BIOMATERIALS IN CONTACT LENSES

Soft contact lens (SCL) biomaterials originated from the discovery of a poly(2-hydroxyethyl methacrylate) (poly[HEMA])-based hydrogel in 1960. Incorporation of hydrophilic polymers into poly(HEMA) hydrogels was performed in the 1970–1980s, which brought an increase in the equilibrium water content, leading to an enhancement of the oxygen permeability. Nowadays, the poly(HEMA)-based hydrogels have been applied in disposable SCL. At the same time, high oxygen-permeable silicone hydrogels were produced, which made it possible to continually wear SCL. Recently, numerous trials for improving the water wettability of silicone hydrogels have been performed. However, little attention has been paid to improving their anti-biofouling properties and biocompatibility. Since biomimetic phospholipid polymers possess excellent anti-biofouling properties and biocompatibility they have the potential to play a valuable role in the surface modification of the silicone hydrogel. The representative phospholipid polymers containing a 2-methacryloyloxyethyl phosphorylcholine (MPC) unit suppressed nonspecific protein adsorption, increased cell compatibility and contributed to blood compatible biomaterials. The MPC polymer coating on the silicone hydrogel improved its water wettability and biocompatibility, while maintaining high oxygen permeability compared with the original silicone hydrogel. Furthermore, the newly prepared phospholipid-type intermolecular crosslinker made it possible to synthesize a 100% phospholipid polymer hydrogel that can enhance the anti-biofouling properties and biocompatibility. In this review, the authors discuss how polymer hydrogels should be designed in order to obtain a biocompatible SCL and future perspectives.

COMMERCIAL APPLICATION OF BIOMATERIALS IN CONTACT LENSES

Rigid lenses, which were originally made from glass (between 1888 and 1940) and later from polymethyl methacrylate or silicone acrylate materials, are uncomfortable to wear and are now seldom fitted to new patients. Contact lenses became a popular mode of ophthalmic refractive error correction following the discovery of the first hydrogel material — hydroxyethyl methacrylate — by Czech chemist Otto Wichterle in 1960. To satisfy the requirements for ocular biocompatibility, contact lenses must be transparent and optically stable (for clear vision), have a low elastic modulus (for good comfort), have a hydrophilic surface (for good wettability), and be permeable to certain metabolites, especially oxygen, to allow for normal corneal metabolism and respiration during lens wear. A major breakthrough in respect of the last of these requirements was the development of silicone hydrogel soft lenses in 1999 and techniques for making the surface hydrophilic. The vast majority of contact lenses distributed worldwide are mass-produced using cast molding, although spin casting is also used. These advanced mass-production techniques have facilitated the frequent disposal of contact lenses, leading to improvements in ocular health and fewer complications. More than one-third of all soft contact lenses sold today are designed to be discarded daily (i.e., ‘daily disposable’ lenses).

CONCLUSION

More is demanded from ophthalmic treatments using contact lenses, which are currently used by over 125 million people around the world. Improving the material of contact lenses (CLs) is a now rapidly evolving discipline. These materials are developing alongside the advances made in related biomaterials for applications such as drug delivery. Contact lens materials are typically based on polymer- or silicone-hydrogel, with additional manufacturing technologies employed to produce the final lens. These processes are simply not enough to meet the increasing demands from CLs and the ever-increasing number of contact lens (CL) users. This review provides an advanced perspective on contact lens materials, with an emphasis on materials science employed in developing new CLs. The future trends for CL materials are to graft, incapsulate, or modify the classic CL material structure to provide new or improved functionality. In this paper, we discuss some of the fundamental material properties, present an outlook from related emerging biomaterials, and provide viewpoints of precision manufacturing in CL development.

REFERENCE

YOUTUBE

sciencedirect.com

researchgate.net

GOOGLE SCOLAR

Done by,

Eldho Subash

--

--